Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Transbound Emerg Dis ; 69(4): e10-e19, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34331741

RESUMO

Vaccination of badgers with Mycobacterium bovis Bacille Calmette-Guérin (BCG) has been shown to protect badgers against tuberculosis in experimental trials. During the 3-year County Kilkenny BCG vaccine field study, badgers were treated orally with placebo (100% in Zone A), BCG (100% in Zone C) or randomly assigned 50%: 50% treatment with BCG or placebo (Zone B). At the end of the study, 275 badgers were removed from the trial area and subjected to detailed post-mortem examination followed by histology and culture for M. bovis. Among these badgers, 83 (30.2%) were captured for the first time across the three zones, representing a non-treated proportion of the population. Analysis of the data based on the infection status of treated animals showed a prevalence of 52% (95% CI: 40%-63%) infection in Zone A (placebo), 39% (95% CI: 17%-64%) in Zone B (placebo) and 44% (95% CI: 20%-70%) in Zone B (BCG vaccinated) and 24% (95% CI: 14%-36%) in Zone C (BCG vaccinated). There were no statistically significant differences in the proportion of animals with infection involving the lung and thoracic lymph nodes, extra-thoracic infection or in the distribution and severity scores of histological lesions. Among the 83 non-treated badgers removed at the end of the study, the infection prevalence of animals in Zone A (prevalence = 46%, 95% CI: 32%-61%) and Zone B (prevalence = 44%, 95% CI: 23%-67%) was similar to the treated animals in these zones. However, in Zone C, no evidence of infection was found in any of the untreated badgers (prevalence = 0%, 95% CI: 0%-14%). This is consistent with an indirect protective effect in the non-vaccinated badgers leading to a high level of population immunity. The results suggest that BCG vaccination of badgers could be a highly effective means of reducing the incidence of tuberculosis in badger populations.


Assuntos
Doenças dos Bovinos , Mustelidae , Mycobacterium bovis , Tuberculose Bovina , Tuberculose , Animais , Vacina BCG , Bovinos , Mustelidae/microbiologia , Tuberculose/epidemiologia , Tuberculose/prevenção & controle , Tuberculose/veterinária , Tuberculose Bovina/epidemiologia , Tuberculose Bovina/prevenção & controle , Vacinação/veterinária
2.
PLoS One ; 13(1): e0190230, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29342164

RESUMO

Chronic inhalation of crystalline silica and silicates may lead to severe lung disease in humans, termed silicosis. The disease is an occupational health concern in miners and related professions worldwide. Silicosis is also a strong risk factor for tuberculosis in humans. Due to its subterranean lifestyle, the European badger (Meles meles) is continuously exposed to environmental dust, while this species is also susceptible to tuberculosis, caused by Mycobacterium bovis. To date, a thorough investigation of mineral dust retention and its possible implication as a risk factor for mycobacterial infection in badgers has not been performed. The aims of this retrospective histological study were (1) to describe the systemic tissue distribution of silica-laden macrophages (SLMs) in badgers; (2) to compare the amount of SLMs in tissues of badgers of differing M. bovis infection status, pulmonary SLM burden and age; and (3) to assess whether inflammation was associated with SLMs. We assessed lung, lymph nodes, liver and spleen of 60 wild-caught badgers of known M. bovis infection status for the presence of SLMs using polarizing light microscopy. SLMs were consistently present within the lungs and were widely distributed throughout the lymphatic system. No inflammatory reaction to SLMs, as occurs in human silicosis, was observed in any tissue. Distribution and amount of SLMs were similar between M. bovis positive and negative badgers, and we were not able to show an association between the amount of SLMs and M. bovis infection status. The amount of SLMs within intra- and extrathoracic lymph nodes was positively associated with the amount of pulmonary SLMs, and with age. This is the first report of substantial and systemic tissue retention of mineral dust particles in a mammalian species lacking associated chronic inflammation (i.e. silicosis). We further highlight different pathogenetic mechanisms underlying silicosis and benign SLM accumulations following siliceous dust inhalation.


Assuntos
Poeira , Macrófagos/microbiologia , Mustelidae/microbiologia , Mycobacterium bovis/isolamento & purificação , Animais , Dióxido de Silício
3.
Front Vet Sci ; 5: 327, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30622951

RESUMO

When human health is put at risk from the transmission of animal diseases, the options for intervention often require input from stakeholders whose differing values systems contribute to decisions on disease management. Animal tuberculosis (TB), caused principally by Mycobacterium bovis is an archetypical zoonotic pathogen in that it can be transmitted from animals to humans and vice versa. Although elimination of zoonotic transmission of TB to humans is frequently promoted as the raison d'être for TB management in livestock, in many countries the control strategies are more likely based on minimizing the impact of sustained infection on the agricultural industry. Where wild animals are implicated in the epidemiology of the disease, the options for control and eradication can require involvement of additional stakeholder groups. Conflict can arise when different monetary and/or societal values are assigned to the affected animals. This may impose practical and ethical dilemmas for decision makers where one or more species of wild animal is seen by some stakeholders to have a greater value than the affected livestock. Here we assess the role of stakeholder values in influencing TB eradication strategies in a number of countries including Ireland, the UK, the USA, Spain, France, Australia, New Zealand and South Africa. What it reveals is that the level of stakeholder involvement increases with the complexity of the epidemiology, and that similar groups of stakeholders may agree to a set of control and eradication measures in one region only to disagree with applying the same measures in another. The level of consensus depends on the considerations of the reservoir status of the infected host, the societal values assigned to each species, the type of interventions proposed, ethical issues raised by culling of sentient wild animals, and the economic cost benefit effectiveness of dealing with the problem in one or more species over a long time frame. While there is a societal benefit from controlling TB, the means to achieve this requires identification and long-term engagement with all key stakeholders in order to reach agreement on ethical frameworks that prioritize and justify control options, particularly where culling of wild animals is concerned.

4.
Artigo em Inglês | MEDLINE | ID: mdl-28174695

RESUMO

The European badger (Meles meles) is a reservoir host of Mycobacterium bovis and responsible for a proportion of the tuberculosis (TB) cases seen in cattle in the United Kingdom and Republic of Ireland. An injectable preparation of the bacillus Calmette-Guérin (BCG) vaccine is licensed for use in badgers in the UK and its use forms part of the bovine TB eradication plans of England and Wales. However, there are practical limitations to the widespread application of an injectable vaccine for badgers and a research priority is the development of an oral vaccine deliverable to badgers in bait. Previous studies reported the successful vaccination of badgers with oral preparations of 108 colony forming units (CFU) of both Pasteur and Danish strains of BCG contained within a lipid matrix composed of triglycerides of fatty acids. Protection against TB in these studies was expressed as a reduction in the number and apparent progression of visible lesions, and reductions in the bacterial load and dissemination of infection. To reduce the cost of an oral vaccine and reduce the potential for environmental contamination with BCG, it is necessary to define the minimal efficacious dose of oral BCG for badgers. The objectives of the two studies reported here were to compare the efficacy of BCG Danish strain in a lipid matrix with unformulated BCG given orally, and to evaluate the efficacy of BCG Danish in a lipid matrix at a 10-fold lower dose than previously evaluated in badgers. In the first study, both BCG unformulated and in a lipid matrix reduced the number and apparent progression of visible lesions and the dissemination of infection from the lung. In the second study, vaccination with BCG in the lipid matrix at a 10-fold lower dose produced a similar outcome, but with greater intra-group variability than seen with the higher dose in the first study. Further research is needed before we are able to recommend a final dose of BCG for oral vaccination of badgers against TB or to know whether oral vaccination of wild badgers with BCG will significantly reduce transmission of the disease.


Assuntos
Vacina BCG/administração & dosagem , Vacina BCG/imunologia , Mustelidae , Mycobacterium bovis/imunologia , Tuberculose/veterinária , Administração Oral , Animais , Relação Dose-Resposta Imunológica , Resultado do Tratamento , Tuberculose/imunologia , Tuberculose/prevenção & controle , Reino Unido
5.
PLoS One ; 12(1): e0168851, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28121981

RESUMO

A field trial was conducted to investigate the impact of oral vaccination of free-living badgers against natural-transmitted Mycobacterium bovis infection. For a period of three years badgers were captured over seven sweeps in three zones and assigned for oral vaccination with a lipid-encapsulated BCG vaccine (Liporale-BCG) or with placebo. Badgers enrolled in Zone A were administered placebo while all badgers enrolled in Zone C were vaccinated with BCG. Badgers enrolled in the middle area, Zone B, were randomly assigned 50:50 for treatment with vaccine or placebo. Treatment in each zone remained blinded until the end of the study period. The outcome of interest was incident cases of tuberculosis measured as time to seroconversion events using the BrockTB Stat-Pak lateral flow serology test, supplemented with post-mortem examination. Among the vaccinated badgers that seroconverted, the median time to seroconversion (413 days) was significantly longer (p = 0.04) when compared with non-vaccinated animals (230 days). Survival analysis (modelling time to seroconversion) revealed that there was a significant difference in the rate of seroconversion between vaccinated and non-vaccinated badgers in Zones A and C throughout the trial period (p = 0.015). For badgers enrolled during sweeps 1-2 the Vaccine Efficacy (VE) determined from hazard rate ratios was 36% (95% CI: -62%- 75%). For badgers enrolled in these zones during sweeps 3-6, the VE was 84% (95% CI: 29%- 97%). This indicated that VE increased with the level of vaccine coverage. Post-mortem examination of badgers at the end of the trial also revealed a significant difference in the proportion of animals presenting with M. bovis culture confirmed lesions in vaccinated Zone C (9%) compared with non-vaccinated Zone A (26%). These results demonstrate that oral BCG vaccination confers protection to badgers and could be used to reduce incident rates in tuberculosis-infected populations of badgers.


Assuntos
Animais Selvagens , Vacina BCG , Mustelidae , Mycobacterium bovis , Tuberculose/veterinária , Vacinação/veterinária , Administração Oral , Animais , Tuberculose/prevenção & controle
6.
Front Vet Sci ; 4: 247, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29379792

RESUMO

Tuberculosis in animals is caused principally by infection with Mycobacterium bovis and the potential for transmission of infection to humans is often the fundamental driver for surveillance of disease in livestock and wild animals. However, with such a vast array of species susceptible to infection, it is often extremely difficult to gain a detailed understanding of the pathogenesis of infection--a key component of the epidemiology in all affected species. This is important because the development of disease control strategies in animals is determined chiefly by an understanding of the epidemiology of the disease. The most revealing data from which to formulate theories on pathogenesis are that observed in susceptible hosts infected by natural transmission. These data are gathered from detailed studies of the distribution of gross and histological lesions, and the presence and distribution of infection as determined by highly sensitive bacteriology procedures. The information can also be used to establish the baseline for evaluating experimental model systems. The European badger (Meles meles) is one of a very small number of wild animal hosts where detailed knowledge of the pathogenesis of M. bovis infection has been generated from observations in natural-infected animals. By drawing parallels from other animal species, an experimental badger infection model has also been established where infection of the lower respiratory tract mimics infection and the disease observed in natural-infected badgers. This has facilitated the development of diagnostic tests and testing of vaccines that have the potential to control the disease in badgers. In this review, we highlight the fundamental principles of how detailed knowledge of pathogenesis can be used to evaluate specific intervention strategies, and how the badger model may be a paradigm for understanding pathogenesis of tuberculosis in any affected wild animal species.

7.
PLoS One ; 10(10): e0138093, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26465324

RESUMO

The reproductive biology of the European badger (Meles meles) is of wide interest because it is one of the few mammal species that show delayed implantation and one of only five which are suggested to show superfetation as a reproductive strategy. This study aimed to describe the reproductive biology of female Irish badgers with a view to increasing our understanding of the process of delayed implantation and superfetation. We carried out a detailed histological examination of the reproductive tract of 264 female badgers taken from sites across 20 of the 26 counties in the Republic of Ireland. The key results show evidence of multiple blastocysts at different stages of development present simultaneously in the same female, supporting the view that superfetation is relatively common in this population of badgers. In addition we present strong evidence that the breeding rate in Irish badgers is limited by failure to conceive, rather than failure at any other stages of the breeding cycle. We show few effects of age on breeding success, suggesting no breeding suppression by adult females in this population. The study sheds new light on this unusual breeding strategy of delayed implantation and superfetation, and highlights a number of significant differences between the reproductive biology of female Irish badgers and those of Great Britain and Swedish populations.


Assuntos
Blastocisto/fisiologia , Implantação Tardia do Embrião/fisiologia , Mustelidae/fisiologia , Reprodução , Dente/fisiologia , Análise de Variância , Animais , Corpo Lúteo/fisiologia , Desenvolvimento Embrionário , Feminino , Geografia , Irlanda , Progesterona/fisiologia , Análise de Regressão , Comportamento Sexual Animal , Suécia , Reino Unido
8.
PLoS One ; 9(7): e100139, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24983473

RESUMO

A long-term research programme has been underway in Ireland to evaluate the usefulness of badger vaccination as part of the national bTB (bovine tuberculosis) control strategy. This culminated in a field trial which commenced in county Kilkenny in 2009 to determine the effects of badger vaccination on Mycobacterium bovis transmission in badgers under field conditions. In the present study, we sought to optimise the characteristics of a multiplex chemiluminescent assay for detection of M. bovis infection in live badgers. Our goal was to maximise specificity, and therefore statistical power, during evaluation of the badger vaccine trial data. In addition, we also aimed to explore the effects of vaccination on test characteristics. For the test optimisation, we ran a stepwise logistic regression with analytical weights on the converted Relative Light Units (RLU) obtained from testing blood samples from 215 badgers captured as part of culling operations by the national Department of Agriculture, Food and the Marine (DAFM). The optimised test was applied to two other datasets obtained from two captive badger studies (Study 1 and Study 2), and the sensitivity and specificity of the test was attained separately for vaccinated and non-vaccinated badgers. During optimisation, test sensitivity was maximised (30.77%), while retaining specificity at 99.99%. When the optimised test was then applied to the captive badger studies data, we observed that test characteristics did not vary greatly between vaccinated and non-vaccinated badgers. However, a different time lag between infection and a positive test result was observed in vaccinated and non-vaccinated badgers. We propose that the optimized multiplex immunoassay be used to analyse the vaccine trial data. In relation to the difference in the time lag observed for vaccinated and non-vaccinated badgers, we also present a strategy to enable the test to be used during trial evaluation.


Assuntos
Reservatórios de Doenças/microbiologia , Ensaio de Imunoadsorção Enzimática/métodos , Mustelidae/microbiologia , Infecções por Mycobacterium/veterinária , Mycobacterium bovis/imunologia , Tuberculose Bovina/prevenção & controle , Vacinação/veterinária , Animais , Bovinos , Irlanda , Infecções por Mycobacterium/diagnóstico , Infecções por Mycobacterium/epidemiologia , Sensibilidade e Especificidade , Tuberculose Bovina/epidemiologia , Tuberculose Bovina/transmissão
9.
Vet J ; 200(3): 362-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24792450

RESUMO

Vaccination of badgers by the subcutaneous, mucosal and oral routes with the Pasteur strain of Mycobacterium bovis bacille Calmette-Guérin (BCG) has resulted in significant protection against experimental infection with virulent M. bovis. However, as the BCG Danish strain is the only commercially licensed BCG vaccine for use in humans in the European Union it is the vaccine of choice for delivery to badger populations. As all oral vaccination studies in badgers were previously conducted using the BCG Pasteur strain, this study compared protection in badgers following oral vaccination with the Pasteur and the Danish strains. Groups of badgers were vaccinated orally with 10(8) colony forming units (CFU) BCG Danish 1331 (n = 7 badgers) or 10(8) CFU BCG Pasteur 1173P2 (n = 6). Another group (n = 8) served as non-vaccinated controls. At 12 weeks post-vaccination, the animals were challenged by the endobronchial route with 6 × 10(3) CFU M. bovis, and at 15 weeks post-infection, all of the badgers were euthanased. Vaccination with either BCG strain provided protection against challenge compared with controls. The vaccinated badgers had significantly fewer sites with gross pathology and significantly lower gross pathological severity scores, fewer sites with histological lesions and fewer sites of infection, significantly lower bacterial counts in the thoracic lymph node, and lower bacterial counts in the lungs than the control group. No differences were observed between either of the vaccine groups by any of the pathology and bacteriology measures. The ELISPOT analysis, measuring production of badger interferon - gamma (IFN-γ), was also similar across the vaccinated groups.


Assuntos
Vacina BCG/normas , Mustelidae , Mycobacterium bovis/imunologia , Tuberculose/veterinária , Vacinação/veterinária , Administração Oral , Animais , Interferon gama/metabolismo , Pulmão/microbiologia , Linfonodos/microbiologia , Tuberculose/microbiologia , Tuberculose/prevenção & controle , Vacinação/normas
10.
PLoS One ; 7(12): e50807, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23227211

RESUMO

Estimates of population size and trappability inform vaccine efficacy modelling and are required for adaptive management during prolonged wildlife vaccination campaigns. We present an analysis of mark-recapture data from a badger vaccine (Bacille Calmette-Guérin) study in Ireland. This study is the largest scale (755 km(2)) mark-recapture study ever undertaken with this species. The study area was divided into three approximately equal-sized zones, each with similar survey and capture effort. A mean badger population size of 671 (SD: 76) was estimated using a closed-subpopulation model (CSpM) based on data from capturing sessions of the entire area and was consistent with a separate multiplicative model. Minimum number alive estimates calculated from the same data were on average 49-51% smaller than the CSpM estimates, but these are considered severely negatively biased when trappability is low. Population densities derived from the CSpM estimates were 0.82-1.06 badgers km(-2), and broadly consistent with previous reports for an adjacent area. Mean trappability was estimated to be 34-35% per session across the population. By the fifth capture session, 79% of the adult badgers caught had been marked previously. Multivariable modelling suggested significant differences in badger trappability depending on zone, season and age-class. There were more putatively trap-wary badgers identified in the population than trap-happy badgers, but wariness was not related to individual's sex, zone or season of capture. Live-trapping efficacy can vary significantly amongst sites, seasons, age, or personality, hence monitoring of trappability is recommended as part of an adaptive management regime during large-scale wildlife vaccination programs to counter biases and to improve efficiencies.


Assuntos
Mustelidae/crescimento & desenvolvimento , Mustelidae/microbiologia , Controle de Pragas , Tuberculose/prevenção & controle , Tuberculose/veterinária , Animais , Irlanda/epidemiologia , Modelos Logísticos , Modelos Biológicos , Distribuição de Poisson , Densidade Demográfica , Crescimento Demográfico , Tuberculose/epidemiologia
11.
Vet Med Int ; 2012: 236205, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22737588

RESUMO

Complex and dynamic interactions involving domestic animals, wildlife, and humans create environments favorable to the emergence of new diseases, or reemergence of diseases in new host species. Today, reservoirs of Mycobacterium bovis, the causative agent of tuberculosis in animals, and sometimes humans, exist in a range of countries and wild animal populations. Free-ranging populations of white-tailed deer in the US, brushtail possum in New Zealand, badger in the Republic of Ireland and the United Kingdom, and wild boar in Spain exemplify established reservoirs of M. bovis. Establishment of these reservoirs is the result of factors such as spillover from livestock, translocation of wildlife, supplemental feeding of wildlife, and wildlife population densities beyond normal habitat carrying capacities. As many countries attempt to eradicate M. bovis from livestock, efforts are impeded by spillback from wildlife reservoirs. It will not be possible to eradicate this important zoonosis from livestock unless transmission between wildlife and domestic animals is halted. Such an endeavor will require a collaborative effort between agricultural, wildlife, environmental, and political interests.

12.
Vet Med Int ; 2012: 742478, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22619743

RESUMO

Badgers (Meles meles) have been implicated in the transmission of Mycobacterium bovis infection to cattle in Ireland and UK. Recent studies in Ireland have shown that although the disease is endemic in badgers, the prevalence of disease is not uniform throughout the country and can vary among subpopulations. The extent to which the prevalence levels in badgers impact on the prevalence in cattle is not known. Previously, DNA fingerprinting has shown that M. bovis strain types are shared between badgers and cattle, and that there are a large number of strain types circulating in the two species. In this study we have carried out spoligotyping and variable number tandem repeat (VNTR) analysis of M. bovis isolates from two groups of badgers, representing a wide geographic area, with different tuberculosis prevalence levels. The results of the typing show that there is no geographic clustering of strain types associated with prevalence. However, two VNTR profiles were identified that appear to be associated with high- and low-prevalence M. bovis infection levels, respectively. In addition, spoligotyping and VNTR analysis has provided evidence, for the first time, of multiple infections of individual badgers with different M. bovis strains.

13.
Vet J ; 194(2): 166-72, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22542391

RESUMO

Populations of Eurasian badgers (Meles meles) with tuberculosis (Mycobacterium bovis infection) are a significant reservoir of infection for cattle in Ireland and the United Kingdom. In this study the distribution of infection, histological lesions and gross lesions was determined in a sample of 132 culled badgers from naturally-infected wild populations. Badgers were culled when an epidemiological investigation following a tuberculosis breakdown in a cattle herd implicated badgers as the probable source of infection. The definition of tuberculosis infection was based on the isolation of M. bovis from tissues or clinical samples. An accurate diagnosis of infection was achieved by culturing a wide range of lymph nodes (LN) and organ tissues (mean 32.1) and clinical samples (faeces and urine) from each badger. Infection was detected in 57/132 badgers (43.2%). Histological lesions consistent with tuberculosis were seen in 39/57 (68.4%) culture-positive and 7/75 (9.3%) culture-negative animals. Gross lesions were seen in only 30/57 (52.6%) infected badgers, leaving a high proportion (47.4%) of infected animals with latent infection (no grossly visible lesions). The most frequently infected tissues were the lungs and axillary LN, followed by the deep cervical LN, parotid LN and tracheobronchial LN. The data support the hypotheses that in badgers there are only two significant routes of infection, namely, the lower respiratory tract and bite wounds, and that badgers are very susceptible to infection but resistant to the development and progression of the disease. At all levels of disease severity, infection was found in widely dispersed anatomical locations suggesting that there is early dissemination of infection in the period preceding the development of active immunity.


Assuntos
Mustelidae/microbiologia , Mycobacterium bovis/isolamento & purificação , Tuberculose/veterinária , Animais , Mordeduras e Picadas/microbiologia , Bovinos , Reservatórios de Doenças/microbiologia , Reservatórios de Doenças/veterinária , Feminino , Irlanda , Pulmão/microbiologia , Linfonodos/microbiologia , Masculino , Gravidez , Infecções Respiratórias/microbiologia , Infecções Respiratórias/transmissão , Infecções Respiratórias/veterinária , Tuberculose/microbiologia , Tuberculose Bovina/microbiologia , Tuberculose Bovina/transmissão , Reino Unido
14.
Comp Immunol Microbiol Infect Dis ; 35(4): 277-87, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22340983

RESUMO

Tuberculosis (TB) is a significant animal health problem in many parts of the world, and reservoirs of infection in wild animals complicate disease control efforts in farmed livestock, particularly cattle. Badgers (Meles meles) are a significant wildlife reservoir of Mycobacterium bovis infection for cattle in the United Kingdom (UK) and Republic of Ireland (ROI). Vaccination of badgers using an M. bovis strain bacille Calmette-Guérin (BCG) vaccine could potentially be an option in the national TB eradication strategy. Wildlife vaccination has been used successfully for other diseases in wildlife species, and may have a role to play in reducing M. bovis transmission at the wildlife-livestock interface. Research to date has provided evidence that BCG is protective in badgers, and a parenteral badger BCG vaccine has been licensed in the UK. Further research is required to develop effective strategies for vaccine deployment and to determine the effect of badger vaccination on cattle TB incidence.


Assuntos
Vacina BCG/imunologia , Reservatórios de Doenças/veterinária , Mustelidae/imunologia , Tuberculose Bovina/prevenção & controle , Tuberculose/veterinária , Animais , Bovinos , Reservatórios de Doenças/microbiologia , Humanos , Mustelidae/microbiologia , Mycobacterium bovis/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose/prevenção & controle , Tuberculose Bovina/imunologia , Tuberculose Bovina/microbiologia , Vacinação/veterinária
16.
PLoS One ; 7(12): e53071, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300863

RESUMO

Ecologists undertaking stable isotopic analyses of animal diets require trophic enrichment factors (TEFs) for the specific animal tissues that they are studying. Such basic data are available for a small number of species, so values from trophically or phylogenetically similar species are often substituted for missing values. By feeding a controlled diet to captive European badgers (Meles meles) we determined TEFs for carbon and nitrogen in blood serum. TEFs for nitrogen and carbon in blood serum were +3.0 ± 0.4‰ and +0.4 ± 0.1‰ respectively. The TEFs for serum in badgers are notably different from those published for the red fox (Vulpes vulpes). There is currently no data for TEFs in the serum of other mustelid species. Our data show that species sharing similar niches (red fox) do not provide adequate proxy values for TEFs of badgers. Our findings emphasise the importance of having species-specific data when undertaking trophic studies using stable isotope analysis.


Assuntos
Mustelidae/sangue , Estado Nutricional , Animais , Dieta , Raposas/sangue , Soro , Especificidade da Espécie
17.
Vet Microbiol ; 151(1-2): 104-11, 2011 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21450420

RESUMO

The principal wildlife reservoir of Mycobacterium bovis in Ireland is the European badger. Studies in the Republic of Ireland (RoI) have shown that badgers culled in association with cattle herd tuberculosis breakdowns (focal culling) have a higher prevalence of infection than the badger population at large. This observation is one rationale for the medium term national strategy of focal badger culling. A vaccination strategy for the control of bovine tuberculosis (bTB) in badgers is a preferred long-term option. The Bacillus Calmette-Guérin (BCG) vaccine has been shown to decrease disease severity in captive badgers under controlled conditions. As the vaccine has been tested in a controlled environment with precise information on infection pressure, it cannot be assumed a priori that the effects of vaccination are similar in the wild, where other environmental and/or ecological factors prevail. For this reason we have designed a vaccine field trial to assess the impact of vaccination on the incidence of TB infection in a wild badger population. The selected study area for the vaccine trial (approximately 755 square kilometers) is divided into three zones each of which has similar characteristics in terms of size, number of main badger setts, cattle herds, cattle and land classification type. Three vaccination levels (100%, 50% and 0%) will be allocated to the three zones in a way that a gradient of vaccination coverage North to South is achieved. The middle zone (zone B) will be vaccinated at a 50% coverage but zone A and C will be randomly allocated with 100% or 0% vaccination coverage. Vaccination within zone B will be done randomly at individual badger level. The objective of this paper is to describe the design of a field tuberculosis vaccination trial for badgers, the epidemiological methods that were used to design the trial and the subsequent data analysis. The analysis will enable us to quantify the magnitude of the observed vaccination effect on M. bovis transmission in badgers under field conditions and to improve our knowledge of the biological effects of vaccination on susceptibility and infectiousness.


Assuntos
Mustelidae/microbiologia , Projetos de Pesquisa , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose Bovina/prevenção & controle , Vacinação/veterinária , Animais , Vacina BCG/administração & dosagem , Vacina BCG/imunologia , Bovinos , Incidência , Irlanda/epidemiologia , Modelos Estatísticos , Mustelidae/imunologia , Mycobacterium bovis/imunologia , Prevalência , Ensaios Clínicos Controlados Aleatórios como Assunto , Vacinas contra a Tuberculose/imunologia , Tuberculose Bovina/epidemiologia , Tuberculose Bovina/transmissão
19.
Vaccine ; 29(21): 3782-90, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21440035

RESUMO

Mycobacterium bovis infection is widespread in Eurasian badger (Meles meles) populations in Great Britain and the Republic of Ireland where they act as a wildlife reservoir of infection for cattle. Removal of infected badgers can significantly reduce the incidence of bovine tuberculosis (TB) in local cattle herds. However, control measures based on culling of native wildlife are contentious and may even be detrimental to disease control. Vaccinating badgers with bacillus Calmette-Guerin (BCG) has been shown to be efficacious against experimentally induced TB of badgers when administered subcutaneously and orally. Vaccination may be an alternative or complementary strategy to other disease control measures. As the subcutaneous route is impractical for vaccinating wild badgers and an oral vaccine bait formulation is currently unavailable, we evaluated the intramuscular (IM) route of BCG administration. It has been demonstrated that the IM route is safe in badgers. IM administration has the practical advantage of being relatively easy to perform on trapped wild badgers without recourse to chemical immobilisation. We report the evaluation of the efficacy of IM administration of BCG Danish strain 1331 at two different doses: the dose prescribed for adult humans (2-8×10(5)colony forming units) and a 10-fold higher dose. Vaccination generated a dose-dependent cell-mediated immune response characterised by the production of interferon-γ (IFNγ) and protection against endobronchial challenge with virulent M. bovis. Protection, expressed in terms of a significant reduction in the severity of disease, the number of tissues containing acid-fast bacilli, and reduced bacterial excretion was statistically significant with the higher dose only.


Assuntos
Vacina BCG/administração & dosagem , Reservatórios de Doenças/microbiologia , Mustelidae/microbiologia , Mycobacterium bovis/isolamento & purificação , Tuberculose/veterinária , Animais , Feminino , Imunidade Celular , Injeções Intramusculares/veterinária , Interferon gama/sangue , Interferon gama/imunologia , Masculino , Mycobacterium bovis/imunologia , Tuberculose/imunologia , Tuberculose/patologia , Tuberculose/prevenção & controle , Vacinação/veterinária
20.
Proc Biol Sci ; 278(1713): 1913-20, 2011 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-21123260

RESUMO

Control of bovine tuberculosis (TB) in cattle has proven particularly challenging where reservoirs of infection exist in wildlife populations. In Britain and Ireland, control is hampered by a reservoir of infection in Eurasian badgers (Meles meles). Badger culling has positive and negative effects on bovine TB in cattle and is difficult, costly and controversial. Here we show that Bacillus Calmette-Guérin (BCG) vaccination of captive badgers reduced the progression, severity and excretion of Mycobacterium bovis infection after experimental challenge. In a clinical field study, BCG vaccination of free-living badgers reduced the incidence of positive serological test results by 73.8 per cent. In common with other species, BCG did not appear to prevent infection of badgers subjected to experimental challenge, but did significantly reduce the overall disease burden. BCG vaccination of badgers could comprise an important component of a comprehensive programme of measures to control bovine TB in cattle.


Assuntos
Vacina BCG/uso terapêutico , Reservatórios de Doenças/veterinária , Mustelidae/imunologia , Tuberculose Bovina/prevenção & controle , Animais , Vacina BCG/imunologia , Bovinos , Inglaterra , Mustelidae/sangue , Mustelidae/microbiologia , Mycobacterium bovis/imunologia , Mycobacterium bovis/patogenicidade , Tuberculose Bovina/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...